Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Article in English | MEDLINE | ID: covidwho-2255976

ABSTRACT

DNA integrity is a key issue in gene therapy and genetic vaccine approaches based on plasmid DNA. In contrast to messenger RNA that requires a controlled cold chain for efficacy, DNA molecules are considered to be more stable. In this study, we challenged this concept by characterizing the immunological response induced by a plasmid DNA vaccine delivered using electroporation. As a model, we used COVID-eVax, a plasmid DNA-based vaccine that targets the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Increased nicked DNA was produced by using either an accelerated stability protocol or a lyophilization protocol. Surprisingly, the immune response induced in vivo was only minimally affected by the percentage of open circular DNA. This result suggests that plasmid DNA vaccines, such as COVID-eVax that have recently completed a phase I clinical trial, retain their efficacy upon storage at higher temperatures, and this feature may facilitate their use in low-/middle-income countries.

SELECTION OF CITATIONS
SEARCH DETAIL